NHE2 is the main apical NHE in mouse colonic crypts but an alternative Na+-dependent acid extrusion mechanism is upregulated in NHE2-null mice.
نویسندگان
چکیده
The mechanism of apical Na(+)-dependent H(+) extrusion in colonic crypts is controversial. With the use of confocal microscopy of the living mouse distal colon loaded with BCECF or SNARF-5F (fluorescent pH sensors), measurements of intracellular pH (pH(i)) in epithelial cells at either the crypt base or colonic surface were reported. After cellular acidification, the addition of luminal Na(+) stimulated similar rates of pH(i) recovery in cells at the base of distal colonic crypts of wild-type or Na(+)/H(+) exchanger isoform 2 (NHE2)-null mice. In wild-type crypts, 20 microM HOE694 (NHE2 inhibitor) blocked 68-75% of the pH(i) recovery rate, whereas NHE2-null crypts were insensitive to HOE694, the NHE3-specific inhibitor S-1611 (20 microM), or the bicarbonate transport inhibitor 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS; 1 mM). A general NHE inhibitor, 5-(N-ethyl-N-isopropyl)amiloride (EIPA; 20 microM), inhibited pH(i) recovery in NHE2-null mice (46%) but less strongly than in wild-type mice (74%), suggesting both EIPA-sensitive and -insensitive compensatory mechanisms. Transepithelial Na(+) leakage followed by activation of basolateral NHE1 could confound the outcomes; however, the rates of Na(+)-dependent pH(i) recovery were independent of transepithelial leakiness to lucifer yellow and were unchanged in NHE1-null mice. NHE2 was immunolocalized on apical membranes of wild-type crypts but not NHE2-null tissue. NHE3 immunoreactivity was near the colonic surface but not at the crypt base in NHE2-null mice. Colonic surface cells from wild-type mice demonstrated S1611- and HOE694-sensitive pH(i) recovery in response to luminal sodium, confirming a functional role for both NHE3 and NHE2 at this site. We conclude that constitutive absence of NHE2 results in a compensatory increase in a Na(+)-dependent, EIPA-sensitive acid extruder distinct from NHE1, NHE3, or SITS-sensitive transporters.
منابع مشابه
NHE2 is the main apical Na/H exchanger in mouse colonic crypts but an alternative Na-dependent acid extrusion mechanism is upregulated in NHE2-null mice
The mechanism of apical Na+-dependent H+ extrusion in colonic crypts is controversial. Using confocal microscopy of living mouse distal colon loaded with BCECF or SNARF-5F (fluorescent pH sensors), measurements of intracellular pH (pHi) in epithelial cells at either the crypt base or the colonic surface are reported. Following cellular acidification, addition of luminal Na+ stimulated similar r...
متن کاملThe Na+/H+ exchanger isoform 2 is the predominant NHE isoform in murine colonic crypts and its lack causes NHE3 upregulation.
The Na(+)/H(+) exchanger isoform NHE2 is highly expressed in the intestinal tract, but its physiological role has remained obscure. The aim of this study was to define its expression, location, and regulatory properties in murine colon and to look for the compensatory changes in NHE2 (-/-) colon that allow normal histology and absorptive function. To this end, we measured murine proximal coloni...
متن کاملIntestinal brush-border Na+/H+ exchanger-3 drives H+-coupled iron absorption in the mouse.
Divalent metal-ion transporter-1 (DMT1), the principal mechanism by which nonheme iron is taken up at the intestinal brush border, is energized by the H(+)-electrochemical potential gradient. The provenance of the H(+) gradient in vivo is unknown, so we have explored a role for brush-border Na(+)/H(+) exchanger (NHE) isoforms by examining iron homeostasis and intestinal iron handling in mice la...
متن کاملApical Na+/H+ exchange near the base of mouse colonic crypts.
Colonic crypts can absorb fluid, but the identity of the absorptive transporters remains speculative. Near the crypt base, the epithelial cells responsible for vectorial transport are relatively undifferentiated and often presumed to mediate only Cl- secretion. We have applied confocal microscopy in combination with an extracellular fluid marker [Lucifer yellow (LY)] or a pH-sensitive dye (2',7...
متن کاملIncreased renal renin content in mice lacking the Na+/H+ exchanger NHE2.
Macula densa (MD) cells express the Na(+)/H(+) exchanger (NHE) isoform NHE2 at the apical membrane, which may play an important role in tubular salt sensing through the regulation of cell volume and intracellular pH. These studies aimed to determine whether NHE2 participates in the MD control of renin synthesis. Renal renin content and activity and elements of the MD signaling pathway were anal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 291 4 شماره
صفحات -
تاریخ انتشار 2006